Learning Sequence Kernels
نویسندگان
چکیده
Kernel methods are used to tackle a variety of learning tasks including classification, regression, ranking, clustering, and dimensionality reduction. The appropriate choice of a kernel is often left to the user. But, poor selections may lead to a sub-optimal performance. Instead, sample points can be used to learn a kernel function appropriate for the task by selecting one out of a family of kernels determined by the user. This paper considers the problem of learning sequence kernel functions, an important problem for applications in computational biology, natural language processing, document classification and other text processing areas. For most kernel-based learning techniques, the kernels selected must be positive definite symmetric, which, for sequence data, are found to be rational kernels. We give a general formulation of the problem of learning rational kernels and prove that a large family of rational kernels can be learned efficiently using a simple quadratic program both in the context of support vector machines and kernel ridge regression. This improves upon previous work that generally results in a more costly semi-definite or quadratically constrained quadratic program. Furthermore, in the specific case of kernel ridge regression, we give an alternative solution based on a closed-form solution for the optimal kernel matrix. We also report results of experiments with our kernel learning techniques in classification and regression tasks.
منابع مشابه
Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملComparing SVM sequence kernels: A protein subcellular localization theme
Kernel-based machine learning algorithms are versatile tools for biological sequence data analysis. Special sequence kernels can endow Support Vector Machines with biological knowledge to perform accurate classification of diverse sequence data. The kernels relative strengths and weaknesses are difficult to evaluate on single data sets. We examine a range of recent kernels tailor-made for biolo...
متن کاملLearning Languages with Rational Kernels
We present a general study of learning and linear separability with rational kernels, the sequence kernels commonly used in computational biology and natural language processing. We give a characterization of the class of all languages linearly separable with rational kernels and prove several properties of the class of languages linearly separable with a fixed rational kernel. In particular, w...
متن کاملGeneralized Similarity Kernels for Efficient Sequence Classification
String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data analysis. In this paper we propose a novel computational framework that uses general similarity metrics and distance-preserving embeddings with string kernels to improve sequence classification. An embedding step, a distance-preserving bitstring mapping, is used to effectivel...
متن کاملMismatch string kernels for discriminative protein classification
MOTIVATION Classification of proteins sequences into functional and structural families based on sequence homology is a central problem in computational biology. Discriminative supervised machine learning approaches provide good performance, but simplicity and computational efficiency of training and prediction are also important concerns. RESULTS We introduce a class of string kernels, calle...
متن کاملA fast, large-scale learning method for protein sequence classification
Motivation: Establishing structural and functional relationships between sequences in the presence of only the primary sequence information is a key task in biological sequence analysis. This ability can be critical for tasks such as making inferences of the structural class of unannotated proteins when no secondary or tertiary structure is available. Recent computational methods based on profi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008